Evaluation of functional feed additive administration in broiler chickens to 21 days

T.J. Broderick, O. Gutierrez, J.T. Lee, T. Duong

PII: S1056-6171(20)30127-6

DOI: https://doi.org/10.1016/j.japr.2020.100121

Reference: JAPR 100121

To appear in: Journal of Applied Poultry Research

Received Date: 22 August 2020

Revised Date: 16 November 2020

Accepted Date: 18 November 2020

Please cite this article as: Broderick T.J., Gutierrez O., Lee J.T. & Duong T., Evaluation of functional feed additive administration in broiler chickens to 21 days *Journal of Applied Poultry Research* (2020), doi: https://doi.org/10.1016/j.japr.2020.100121.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© YEAR Published by Elsevier Inc. on behalf of Poultry Science Association Inc.

1	FUNCTIONAL FEED ADDITIVE ADMINISTRATION
2	Evaluation of functional feed additive administration in broiler chickens to 21 days
3	
4	T. J. Broderick [*] , O. Gutierrez [†] , J. T. Lee [*] , and T. Duong ^{*,1}
5	
6	[*] Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
7	[†] Huvepharma, Inc., Peachtree City, GA, 30269, USA
8	
9	¹ Corresponding Author: t-duong@poultry.tamu.edu
10	
11	Tri Duong, Department of Poultry Science, Texas A&M University, 2472 TAMU, College
12	Station, TX 77843-2472. Phone: +1 979 847 7364,
13	
14	Key Words: Bacillus licheniformis, Direct-Fed Microorganisms, prebiotics, phytogenic
15	preparations, functional feed additives
16	
17	Primary Audience: Nutritionists, Researchers, Veterinarians
18	

Broderick et al. - 1

1	q
т	J

SUMMARY

20	Administration of functional feed additives, including Direct-Fed Microorganisms
21	(DFM), dietary prebiotics, and phytogenic preparations, has been demonstrated to improve
22	growth performance, animal health, and microbial food safety in poultry and is thought to be a
23	potentially important component of antibiotic-free poultry production. In this study, we
24	investigated the administration of Bacillus licheniformis (BL) as a DFM, co-administration of
25	BL with an additive blend of a dietary prebiotic and a phytogenic preparation (BL+A), and co-
26	administration of BL with a dietary prebiotic as a synbiotic (SYN) in broiler chickens in
27	comparison to an antibiotic over a 21 d growth period. Administration of BL improved FCR as
28	compared to untreated broilers through 14 d post-hatch. Administration of BL +A and SYN
29	increased total Lactic Acid Bacteria and decreased Clostridium perfringens compared to the
30	antibiotic-treated and untreated broilers, respectively. Administration of BL was also observed to
31	increase the villus height to crypt depth ratio as compared to the untreated control. Overall, our
32	results suggest co-administration of B. licheniformis as a DFM with other functional feed
33	additives is able to improve feed efficiency, promote positive shifts in populations of
34	gastrointestinal microbiota, and improve measures of gastrointestinal function.

35

DESCRIPTION OF PROBLEM

The administration of sub-therapeutic antibiotics has been used widely to increase weight 36 gain (Engberg et al., 2000), improve feed efficiency (Miles et al., 1984; Harms et al., 1986), and 37 reduce poultry and human foodborne pathogens (Williams, 1985; Sims et al., 2004) in poultry 38 production. Although they have been applied in poultry for over 50 years, the use of antibiotic 39 growth promoters (AGP) has declined (Sneeringer et al., 2015) due to consumer preferences 40 41 (Brewer and Rojas, 2007) and regulations (Castanon, 2007) resulting from concerns over the 42 development of antibiotic resistance in bacteria (McEwen and Fedorka-Cray, 2002; Forgetta et al., 2012). As the demand for antibiotic-free (ABF) production of poultry and other livestock 43 44 continues to grow, the continued development of alternatives to antibiotics will become increasingly important. Because the beneficial effects of antibiotics are attributed to their 45 46 activities on the microbial community in the gastrointestinal (GI) tract (Visek, 1978; Gaskins et 47 al., 2002), the GI microbiota is an important target for the development of alternatives to AGP (Askelson and Duong, 2015). 48

The United States Food and Drug Administration has defined direct-fed microbial 49 products as those that "are purported to contain live microorganisms (FDA, 1995)", and the 50 International Scientific Association for Probiotics and Prebiotics has defined a prebiotic as "a 51 52 substrate that is selectively utilized by host microorganisms conferring a health benefit (Gibson 53 et al., 2017)". Phytogenic preparations consist of plant derived products used in animal diets to improve productivity or feed quality (Windisch et al., 2008). The use of Direct-Fed 54 Microorganisms (DFM), prebiotics, and phytogenic preparations as functional additives, 55 ingredients that may provide a benefit beyond satisfying traditional nutrient requirements 56 57 (Marriott, 2000), is seen as a potentially important alternative to the use of AGP in poultry

production. When administered to poultry individually or in combination, DFM, prebiotics, and
phytogenic preparations have been demonstrated to promote growth and performance (Flores et
al., 2019a; Flores et al., 2019b), reduce GI colonization by human foodborne and poultry
pathogens (Askelson et al., 2018; Froebel et al., 2019), and improve measures of intestinal
function (Xu et al., 2003).

Because of their benefits, interest in the administration of functional additives as alternatives to the use of AGP has increased. Although the benefits of the administration of DFM, prebiotics, and phytogenic preparations have been widely reported, their application in the poultry industry is inconsistent, their overall effectiveness is mixed, and the functionalities of specific additives are not well understood. In this study, we investigated the co-administration of *Bacillus licheniformis* as a DFM with functional additive blend including dietary prebiotics and phytogenic preparations on the growth performance and GI microbiota of broiler chickens. 70

MATERIALS AND METHODS

71 Experimental Animals and Husbandry

Male broilers chicks (Cobb 500) were obtained from a commercial hatchery on day of 72 hatch and vaccinated for *Eimeria* (Advent, Huvepharma Inc, Peachtree City, GA), weighed, 73 wing banded, and assigned randomly to treatment pens with statistically similar starting weights 74 at an initial stocking density of 0.096 m^2 per bird. Experimental animals were raised in floor pens 75 on built-up litter under conditions simulating commercial poultry production and provided access 76 77 to water and experimental rations *ad libitum* for the 21 d duration of the study. An industry lighting program was used in accordance with standard operating procedures of the Texas A&M 78 University Poultry Research Center (Flores et al., 2019b) with temperature guidelines following 79 the breeder's recommendations (Cobb-Vantress, 2013). All experimental procedures were 80 performed as approved by the Texas A&M University Institutional Animal Care and Use 81 Committee. 82

83 Experimental Design and Diets

The effect of functional feed additive administration on growth performance, GI 84 microbiota, ileal histomorphometry, and serum antioxidant capacity was evaluated in comparison 85 to an AGP. Broiler chicks (n=1960) were allocated to 5 experimental treatment groups with total 86 of 49 pens of 40 birds arranged, due to housing constraints, as a randomized incomplete block 87 design and fed experimental rations supplemented with functional additives using the 88 manufacturers' recommended incorporation rates. The 5 experimental treatment groups were as 89 follows: bacitracin methylene disalicylate (**BMD**) treated (50 g ton⁻¹) feed (10 pens); untreated 90 (UNT) feed (9 pens); administered Bacillus licheniformis DSM 28710 (BL) in-feed at 1.6 x10⁹ 91 cfu kg⁻¹ feed (Huvepharma, Inc., Peachtree City, GA) as a DFM (10 pens); co-administered BL 92

with a functional feed additive blend (BL+A) consisting of a multi-strain DFM culture of *Lactobacillus acidophilus* and *Enterococcus faecium* in-feed at 4.4 x10⁷ cfu kg⁻¹ feed, yeast cell
wall extract at 113.40 g ton⁻¹ feed (Phileo, Marcquen-Baroel, FR), and a phytogenic preparation
of capsicum, cinnamaldehyde, and carvacrol at 45.36 g ton⁻¹ (Allied Nutrition, Doringkloof, ZA)
(10 pens); or administered a synbiotic (SYN) combination of BL and a yeast cell wall extract
(Altech, Lexington, KY) at 226.79 g ton⁻¹ (10 pens).

Experimental rations (Table 1) were fed for the duration of the study in two phases: 99 starter (0 to 14 d post-hatch, crumble) and grower (14 to 21 d post-hatch, pellet). Diets for each 100 phase were mixed using a 2-ton horizontal double-ribbon Scott mixer, pelleted using a 1 ton/hr 101 102 California Pellet Mill at 175°F equipped with a 4.4 mm diameter die and conditioner, and crumbled using a roller mill when appropriate. Feed was manufactured as a single commercial-103 type corn/soybean meal basal diet with 5 % distiller's dried grains with solubles and added 104 105 phytase and xylanase and divided for inclusion of dietary treatments as appropriate. Full matrix values for enzyme contribution of aP, Ca, Na, digestible AA, and ME as recommended by the 106 manufacturer were used. 107

108 Growth Performance Measurements

Experimental animals and residual feed were weighed by pens at 0, 14, and 21 d posthatch for determination of BW and feed consumption. Mortalities and post-mortem weight were recorded for calculation of percent mortality, ADG, ADFI, and mortality corrected FCR.

112 Tissue Sample Collection

At 21 d post-hatch, one representative (median weight ± 5%) experimental animal was
selected from each pen, killed humanely, and dissected aseptically for the collection of tissues.
Ileal sections of approximately 6 cm taken at the midpoint between the ileocecal junction and

116 Meckel's diverticulum were collected from each bird and divided in half with the proximal and

distal segments being used for enumeration of ileal microbiota and histomorphometry,

- respectively. Additionally, the ceca and whole blood were collected from each bird for
- enumeration of cecal microbiota and determination of serum antioxidant capacity, respectively.

120 Bacterial Enumeration

121 Ileal specimens were homogenized and diluted serially using Fluid Thioglycolate

122 Medium (FTM; BD, Franklin Lakes, NJ). One cecal specimen from each broiler was

123 homogenized and diluted serially using sterile phosphate buffered saline (PBS, ThermoFisher

124 Scientific, Waltham, MA), whereas the other was placed in 10 mL Bolton's Enrichment Broth

125 (**BEB**; Hardy Diagnostics, Santa Maria, CA).

126 *Clostridium perfringens* was enumerated from the ileal specimens using Tryptose Sulfite

127 Cycloserine-Egg Yolk agar (BD) incubated at 37 °C anaerobically (Coy Laboratory Products,

128 Inc., Grass Lake, MI) for 48 h; *Campylobacter* spp. were enumerated using Campy Cefex agar

129 (Hardy) incubated at 42 °C in 10% CO₂ for 48 h; and *Lactobacillus* spp. were enumerated from

the ileum and cecal specimens using Rogosa Selective Lactobacilli agar (BD) supplemented with

131 100 μg mL⁻¹ cylcoheximide (Amresco, Solon, OH). *C. perfringens* were selectively enriched

132 from the ileum using FTM and Iron Milk Media (HiMedia; Mumbai, India), whereas

133 *Campylobacter* spp. were selectively from the cecum using BEB and Campy Cefex Agar.

134 Specimens for which no colonies appeared on enumeration plates but were positive by selective

enrichment were assigned the limit of detection for enumeration (100 cfu g^{-1}).

136 *Histomorphometry*

137 Ileal specimens were flushed and fixed using sterile PBS and 10% neutral buffered138 formalin (ThermoFisher), respectively. Fixed ileal specimens were trimmed, embedded in

paraffin, sectioned, and prepared on slides for analysis using Alcian Blue and Periodic Acid
Schiff staining. Measurements of five intact villi and crypts were recorded over three crosssections for each broiler at 100× magnification. Villus heights and crypt depths were used to
calculate the villus height to crypt depth ratio (VH:CD).

143 Serum Antioxidant Capacity

Whole blood was collected post-mortem using blood collection tubes (SST Plus, BD), incubated (room temperature, 30 min) and centrifuged (1000× g, 10 min, 4°C), and serum was collected as the resultant supernatant. Antioxidant capacity was determined as the Trolox equivalent inhibition of metmyoglobin-induced oxidation of 2,2'-azino-di-(3-ethylbenzthiazoline sulphonate) (**ABTS**) according to the manufacturer's instructions (Cayman Chemical Co, Ann Arbor, MI). Oxidation of ABTS was monitored colorimetrically using absorbance at 405 nm (Tecan Systems Inc., San Jose, CA). Serum antioxidant capacity was reported as mM Trolox

151 equivalents.

152 Statistical Analysis

Univariate tests were used to verify normality and homoscedasticity of data so that all assumptions of ANOVA were fulfilled. Percent mortality was arcsine square root transformed for analysis (Gotelli and Ellison, 2004), whereas bacterial counts were log_{10} transformed for analysis. The General Linear Model was used to determine significant treatment effects, and significantly different means were separated *post-hoc* using Duncan's Multiple Range Test ($P \le$ 0.05).

159

160

181

RESULTS AND DISUCSSION

Although the administration of sub-therapeutic doses of antibiotics has been used to great 161 benefit in the production of poultry and other livestock, growing consumer (Brewer and Rojas, 162 2007) and regulatory pressures (Brewer and Rojas, 2007) have increased the need for the 163 development of alternatives to the use of AGP. Antibiotics have been suggested to improve 164 growth and performance of livestock through competition for nutrients between GI microbiota 165 166 and the host animal, decreased production of toxins and other growth depressing metabolites by the microbiota, and inhibition of subclinical infections (Corpet, 2000; Butaye et al., 2003). 167 Because the growth promoting effects of antibiotics come as a result from their activities on the 168 169 microbial community in the GI tract (Gaskins et al., 2002), the GI microbiota is an important target for the development of alternatives to AGP (Askelson and Duong, 2015). Because their 170 171 beneficial effects on growth promotion and animal health are mediated through their activities on 172 the GI microbiota, the administration of DFM prebiotics, and phytogenic preparations as functional additives, ingredients that may provide a benefit beyond satisfying traditional nutrient 173 requirements (Marriott, 2000), is seen as a potentially important alternative to the use of AGP in 174 poultry production. Although the administration of DFM is used widely in poultry production, 175 their effects when co-administered with other functional additives is not well understood. In this 176 study, we investigated the co-administration of DFM with other functional additives, including 177 178 prebiotics and phytogenic preparations, as potential alternatives to AGP in poultry production. **Growth Performance** 179 The effects of functional additive administration on the growth performance of broiler 180

182 2). No significant treatment effects were observed on BW, ADG, ADFI, or mortality over the 21-

chickens was evaluated in comparison to antibiotic-treated and untreated control groups (Table

Broderick et al. - 10

d course of the study. However, a significant treatment effect on FCR was observed over 0 to 14 183 d post-hatch (P = 0.049). Feed conversion ratio was highest when broilers were fed the untreated 184 diet. Administration of BMD and direct-fed B. licheniformis (BL) decreased FCR when 185 compared to the untreated broilers. Although FCR over 0 to 14 d was not significantly reduced 186 when compared to the untreated broilers, co-administration of direct-fed B. licheniformis and the 187 feed additive blend (BL+A) or the synbiotic (SYN) did reduce FCR to a level similar to that of 188 189 BMD-treated broilers. No significant treatment effect was observed on FCR over 14 to 21 or 0 to 21 d post-hatch. 190

Improvements in BW, body weight gain, or feed consumption are often not observed in 191 192 the absence of a disease or stress challenge (Midilli et al., 2008), whereas significant improvements to growth have been reported previously when broilers are raised under conditions 193 of experimentally applied stress (Knap et al., 2010; Song et al., 2014; Johnson et al., 2020). Poor 194 195 *Eimeria* vaccine cycling or absence of a direct microbial challenge due to low litter moisture (Edens et al., 1998) may have contributed the lack of an observable growth response in our 196 study. Although litter moisture was not measured, low relative humidity in the outside 197 environment lead to observably dry and dust conditions within the research barn. Administration 198 of B. licheniformis has been reported previously to improve FCR during the starter phase (Midilli 199 200 et al., 2008; Gong et al., 2018). B. licheniformis and other Bacillus spp. are valued as industrial 201 microorganisms because of their production of important digestive enzymes including amylases, phytases, and proteases (Rozs et al., 2001; Tye et al., 2002; Hmidet et al., 2010; Gong et al., 202 203 2018). Increased digestive enzyme activity has been observed when administered in poultry 204 (Gong et al., 2018) suggesting enzyme production in situ by *Bacillus* spp. may directly improve digestibility of feed and increase feed efficiency. Indeed, administration of heterologous phytase 205

producing recombinant *Lactobacillus* spp. has been demonstrated to improve growth of broilers
a fed phosphorous-deficient diet (Askelson et al., 2014), underscoring the significance of
microbial enzyme production in animal production.

209 Gastrointestinal Microbiota

A significant treatment effect was observed on *Clostridium perfringens* counts (P = 210 0.027) in the ileum (Figure 1A). C. perfringens counts were highest when broilers were fed the 211 212 untreated diet and lowest when broilers were fed diets treated with BMD or SYN. Although they 213 were not significantly different from the untreated control, administration of BL and BL+A reduced colonization of C. perfringens to levels similar to BMD. Bacitracin, a non-ribosomal 214 215 peptide (NRP) antibiotic produced commercially using strains of B. licheniformis (Rey et al., 2004), and its derivatives, BMD and zinc-bacitracin, have been used widely as AGP and for 216 217 mitigation of necrotic enteritis in poultry because of their antibacterial activity on C. perfringens 218 (Sims et al., 2004; Fasina et al., 2015). Homologs of bacitracin synthetase (bac) genes are distributed widely among B. licheniformis strains, with over half of the strains screened being 219 reported to harbor homologs of the *bac* gene cluster (Ishihara et al., 2002), suggesting that 220 production of an antimicrobial NRP in situ in the GI tract may be important to the functionality 221 of direct-fed B. licheniformis strains as potential alternatives to AGP. Production of bacitracin by 222 223 B. licheniformis in situ the GI tract of gnotobiotic mice has been demonstrated previously to 224 inhibit experimental C. perfringens infection (Ducluzeau et al., 1976). The reduction of inflammation induced by C. perfringens during subclinical infection has been reported to 225 promote growth by sparing energy otherwise lost to the immune system (Stutz and Lawton, 226 227 1984; Hofshagen and Kaldhusdal, 1992) and likely contributed to the observed improvements to the FCR of B. licheniformis-treated broilers in our study. Indeed, administration of DFM to 228

229 broiler chickens has been reported previously to repartition energy away from a proinflammatory response in the GI tract to other host tissues (Qiu et al., 2012). Furthermore, rapid selection of 230 bacitracin-resistant C. perfringens was observed when the antibiotic was administered in-feed to 231 experimentally infected mice (Ducluzeau et al., 1976). However, the same study reported that 232 bacitracin-resistant bacteria were not observed when mice were administered B. licheniformis, 233 suggesting a potentially important advantage to the production of antibiotics in situ by DFM in 234 235 the GI tract over the use of AGP. Further characterization will be required in order to determine whether B. licheniformis DSM 28710 produces an antimicrobial NRP and whether it is capable 236 of doing so in situ in the GI tract. 237 238 Poultry are a commensal host for Campylobacter spp. (Duong and Konkel, 2009) and serve as a primary reservoir for foodborne Campylobacter infection in humans (Olson et al., 239 2008). The treatments were not observed to have a significant effect (P=0.095) on 240 241 *Campylobacter* counts in the cecum of broiler chickens (Figure 1B). However, fewer Campylobacter tended to be recovered from SYN-treated broilers as compared with those 242 administered BL+A. Although the 0.6 \log_{10} cfu reduction was not observed to be significant, a 243 quantitative risk assessment model suggested that Campylobacter reductions of a similar degree 244 should result in a 30-50 % reductions in the burden of Campylobacter-associated foodborne 245 illness from poultry (Rosenquist et al., 2003). 246 247 Administration of hydrolyzed yeast-cell wall extracts, composed largely of mannanoligosaccharides (MOS), β -glucans, and other prebiotics, has been demonstrated 248 previously to reduce cecal Campylobacter counts (Baurhoo et al., 2009; Froebel et al., 2019). 249 However, the effectiveness of various yeast-derived prebiotics in reducing *Campylobacter* 250

colonization is mixed and their interaction with other functional additives has not been well

252	characterized (Corrigan et al., 2017). The difference in MOS composition or interactions
253	between MOS and the additional functional additives in the functional additive blend
254	administered to the BL+A-treated broilers may have contributed to this difference. The yeast-
255	derived prebiotic administered to the SYN-treated was a more purified MOS fraction whereas
256	the yeast-derived prebiotic administered to the BL+A broilers contained a yeast fraction rich in
257	both MOS and β -glucans. Previous research has shown statistically insignificant 0.6 log
258	difference in Campylobacter counts between different mannan-rich fractions used at
259	manufacturer recommended inclusion levels (Corrigan et al., 2017). Although MOS has not yet
260	been demonstrated to agglutinate Campylobacter (Spring et al., 2000), it has been demonstrated
261	to inhibit Campylobacter adhesion to poultry epithelial cells in vitro (Froebel et al., 2020)
262	suggesting inhibition of adhesion in the GI tract may be important to the functionality of yeast
263	cell-wall derived prebiotics in reducing pathogen colonization.
264	Lactobacillus spp. and other Lactic Acid Bacteria (LAB) are recognized widely as
265	beneficial organisms because of their beneficial effects on GI health and host immunity
266	(Broderick and Duong, 2016; Vieco-Saiz et al., 2019). The treatments were not observed to have
267	a significant effect ($P = 0.090$) on counts of <i>Lactobacillus</i> in the ileum (Figure 2C) but were
268	observed to have a significant effect (P = 0.036) in the cecum (Figure 1D). Although the effect in
269	the ileum was not significant, more lactobacilli tended to be recovered from broilers fed the
270	BL+A treated diet as compared to those fed the SYN-treated diet. However, in the cecum, fewer
271	Lactobacillus were recovered when broilers were fed the BMD-treated diet as compared to the
272	remaining treatments. BMD administration has been demonstrated previously to reduce
273	Lactobacillus and other LAB in the GI tract of poultry (England et al., 1996; Lu et al., 2008) due
274	to their sensitivity to the activity of BMD against Gram-positive bacteria (Morris, 1956; Elkins

and Mullis, 2004). The Lactobacillus acidophilus included in the feed additive blend 275 administered to the BL+A treatment is likely contributed to increased recovery of Lactobacillus 276 as compared to other treatments in the ileum and as compared to BMD-treated broilers in the 277 cecum (Lan et al., 2004). Administration of B. licheniformis DSM 28710 has been reported 278 previously to reduce GI pH (Trela et al., 2020), which may promote energy sparing and nutrient 279 availability through the reduction of harmful bacteria (Thanh et al., 2009). Lactobacillus spp. 280 possess an array of acid tolerance factors that increase their survivability in low pH environments 281 and could allow for their persistence in the GI tract of broilers fed *B. licheniformis* (Broderick 282 and Duong, 2016). 283

284 Histomorphometery

The effects of the administration of functional feed additives on intestinal morphology 285 286 were evaluated to serve as an indicator of GI function (Figure 2). A significant treatment effect 287 was not observed on villus height (P = 0.116) but was observed on crypt depth (P = 0.009) and villus height:crypt depth (VH:CD) ratio (P < 0.001). Crypts of broilers administered BL, BL+A, 288 or SYN were shallower as compared to BMD treated broilers. Crypts of broilers administered 289 DFM alone or in combination with additive blend B were also shallower when compared with 290 the untreated broilers. Greater crypt depth is indicative of increased cell turnover and is 291 292 associated with higher energy expenditure due to the increased nutrient requirement for 293 maintenance (Yason et al., 1987). Additionally, VH:CD was also greater when broilers were 294 administered BL or SYN as compared with the untreated control, with VH:CD of SYN-treated broilers also being greater than that of BMD-broilers. Increased VH:CD (Lei et al., 2015) and 295 decreased crypt depth (Latorre et al., 2017) have been reported previously when broilers were 296 297 administered *Bacillus* spp. as DFM. Additionally, α -amylase produced in situ by *B. licheniformis*

298 (Divakaran et al., 2011) may contribute to improved morphology as increased energy available to the host through increased carbohydrate degradation and absorption allows for positive 299 structural development of the small intestine (Ritz et al., 1995). Improved VH:CD through 300 inclusion of *B. licheniformis* and functional feed additives was driven by shallower crypts. 301 Deeper crypts drive cell turnover in the small intestine which increases maintenance 302 requirements and decreases efficiency(Pluske et al., 1996). Although a small fraction of body 303 304 weight, the gastrointestinal tract accounts for upwards of 20% of energy expenditures (Spratt et al., 1990; Cant et al., 1996). The reduction in FCR by B. licheniformis and functional feed 305 additives to levels similar to BMD may be facilitated by reduced energy expenditure due to 306 307 shallower crypts.

308 Serum Antioxidant Capacity

Oxygen and nitrogen free radicals, products of normal metabolic activity and immune 309 310 function, can damage host DNA, proteins, and lipids (Surai, 2007). Antioxidant capacity measures the ability of antioxidants in the serum to quench free radicals compared against a 311 trolox standard (Apak et al., 2013). A significant treatment effect was not detected (P = 0.055) 312 for serum antioxidant capacity (Figure 3). However, antioxidant capacity of broilers 313 administered BL+A or SYN tended to be greater when compared to those administered DFM 314 315 alone. Neither the positive or negative control was distinguishable from the treated groups. 316 Functional feed additives are capable of increasing total antioxidant capacity in broilers (Paraskeuas et al., 2017). Administration of phytogenic preparations and synthetic antioxidants 317 as functional feed additives has been demonstrated previously to increase serum antioxidant 318 capacity in addition to reducing lipid oxidation in broiler meat (Wang et al., 1997; Jang et al., 319 320 2008; Cherian et al., 2013). Saccharomyces-derived MOS have been reported scavenge reactive

321 oxidative radicals and exhibit anti-mutagenic activity in vitro (Križková et al., 2001). Thus, the yeast-derived MOS administered in BL+A and SYN treatments likely contributed to the 322 increased antioxidant capacity compared to BL alone. When administered to poultry, yeast or 323 MOS has been reported to increase the activity of antioxidative enzymes including catalase and 324 glutathione peroxidase and other antioxidants in blood (Ognik and Krauze, 2012; Aluwong et 325 al., 2013). An increase in antioxidant capacity may be beneficial to the immune response by 326 327 mitigating inflammation in the gastrointestinal tract. Reactive oxygen species in the mucosa cause inflammation which hinders digestion and absorption of nutrients (Kruidenier et al., 2003). 328 Additionally, oxidative stress increases lipid peroxidation which can induce metabolic 329 330 disturbances (Vila et al., 2002). By increasing the capacity to mitigate influxes in reactive species, broilers are better able to tolerate disease and environmental stressors that would 331 332 otherwise cause oxidative damage to lipids, proteins, or tissues (Tawfeek et al., 2014). 333 In this study, we investigated the effects *Bacillus licheniformis* and its co-administration with functional additive blends consisting of dietary prebiotics and phytogenic preparations in 334 broiler chickens. Administration of direct-fed B. licheniformis alone and in conjunction with 335 functional additives improves performance parameters, gastrointestinal health, and intestinal 336 morphology. Feed conversion ratio was lower for broilers administered direct-fed B. 337 338 licheniformis as compared to untreated broilers through 14 d post-hatch. Co-administration of 339 DFM with functional additives decreased counts of Clostridium perfringens compared to the untreated control and increased counts of *Lactobacillus* spp. compared to antibiotic treated 340 broilers. Administration of Direct-Fed B. licheniformis was observed to increase the villus height 341 crypt to depth ratio (VH:CD) compared to the untreated control, whereas co-administration of 342 DFM with functional additives increased VH:CD ratio compared to both the untreated and 343

344 antibiotic treated control. Direct-Fed B. licheniformis and functional feed additives are able to

improve feed efficiency, promote positive shifts in populations of gastrointestinal microbiota, 345

and improve measures of gastrointestinal function. Although their independent contributions 346

improve performance and health metrics, there is not sufficient data to indicate a synergistic 347

relationship between Bacillus licheniformis and functional additives in broiler production. 348

349

350

CONCLUSIONS AND APPLICATION

- 351 1. Administration of Bacillus licheniformis decreased FCR to levels statistically similar to an
- antibiotic control compared to untreated feed. 352
- 2. Functional feed additives promote a healthier GI microbiota by decreasing *Clostridium* 353
- perfringens and increasing total Lactic Acid Bacteria. 354
- 3. Bacillus licheniformis and functional additives improve measures of gut function (VH:CD) 355

356

.es of

ACKNOWLEDGEMENTS

- 358 T. J. Broderick was supported by the Texas A&M University College of Agriculture and
- Life Sciences Excellence Fellowship and a graduate assistantship from the Texas A&M 359
- University Department of Poultry Science. 360
- 361

357

ound

362	FIGURE LEGENDS
363	Figure 1. Enumeration of gastrointestinal bacteria from broiler chickens. (A) Clostridium
364	perfringens and (B) Lactobacillus spp. were enumerated from the ileum, and (C) Campylobacter
365	spp. and (D) <i>Lactobacillus</i> spp. were enumerated from the cecum of broiler chickens at 21 d
366	post-hatch. BMD, bacitracin methylene disalicylate; UNT, untreated; BL, direct-fed B.
367	<i>licheniformis</i> ; BL+A, BL with additive blend; SYN, synbiotic. Counts are reported as mean \pm
368	SEM \log_{10} cfu g ⁻¹ digestive contents from 9 UNT broilers or 10 broilers for all other treatments.
369	Means not sharing common letters differ significantly (P \leq 0.05).
370	
371	Figure 2. Ileal histomorphometry of broiler chickens. Ileal sections were sampled at 21d post-
372	hatch for determination of (A) villus height and (B) crypt depth and calculations of (C) VH:CD.
373	BMD, bacitracin methylene disalicylate; UNT, untreated; BL, direct-fed <i>B. licheniformis</i> ; BL+A,
374	BL with additive blend; SYN, synbiotic. Villus height and crypt depth are reported as mean \pm
375	SEM μ m of 3 ileal sections from 9 UNT broilers or 10 broilers for all other treatments. Means
376	not sharing common letters differ significantly (P \leq 0.05).
377	
378	Figure 3. Serum antioxidant capacity of broiler chickens. Serum was separated from whole
379	blood and collected at 21 d post-hatch. Antioxidant capacity is reported as the treatment mean \pm
380	SEM mM trolox equivalents from 9 UNT broilers or 10 broilers for all other treatments. Means

381 not sharing common letters differ significantly ($P \le 0.05$).

382 383	REFERENCES
384 385 386	Aluwong, T., M. Kawu, M. Raji, T. Dzenda, F. Govwang, V. Sinkalu, and J. Ayo. 2013. Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens. Antioxidants 2:326-339.
387 388 389	Apak, R., S. Gorinstein, V. Böhm, K. M. Schaich, M. Özyürek, and K. Güçlü. 2013. Methods of measurement and evaluation of natural antioxidant capacity/activity. Pure Appl. Chem. 85:957-998.
390 391 392	Askelson, T. E., A. Campasino, J. T. Lee, and T. Duong. 2014. Evaluation of phytate-degrading <i>Lactobacillus</i> culture administration to broiler chickens. Appl. Environ. Microbiol. 80:943-950.
393 394 395 396	Askelson, T. E., and T. Duong. 2015. Perspectives on differences between human and livestock animal research in probiotics and prebiotics. Pages 447-458 in Probiotics and Prebiotics: Current Research and Future Trends. K. Venema and A. P. do Carmo, eds. Caister Academic Press, Norfolk, UK.
397 398 399 400	Askelson, T. E., C. A. Flores, S. L. Dunn-Horrocks, Y. Dersjant-Li, K. Gibbs, A. Awati, J. T. Lee, and T. Duong. 2018. Effects of direct-fed microorganisms and enzyme blend co-administration on intestinal bacteria in broilers fed diets with or without antibiotics. Poult. Sci. 97:54-63.
401 402 403 404	Baurhoo, B., P. R. Ferket, and X. Zhao. 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88:2262-2272.
405 406	Brewer, M. S., and M. Rojas. 2007. Consumer attitudes toward issues in food safety. J. Food Saf. 28:1-22.
407 408	Broderick, T. J., and T. Duong. 2016. Mechanisms of <i>Lactobacillus</i> persistence and colonization in the gatrointestinal tract of poultry, a review. Int. J. Prebiotics Probiotics 11:15-28.
409 410 411	Butaye, P., L. A. Devriese, and F. Haesebrouck. 2003. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 16:175-188.
412 413	Cant, J. P., B. W. McBride, and W. J. Croom Jr. 1996. The regulation of intestinal metabolism and its impact on whole animal energetics. J. Anim. Sci. 74:2541-2553.
414 415	Castanon, J. I. R. 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 86:2466-2471.
416 417	Cherian, G., A. Orr, I. C. Burke, and W. Pan. 2013. Feeding <i>Artemisia annua</i> alters digesta pH and muscle lipid oxidation products in broiler chickens. Poult. Sci. 92:1085-1090.

- 418 Cobb-Vantress. 2013. Cobb Broiler Management Guide. Siloam Springs, AR.
- 419 Corpet, D. E. 2000. Mechanism of antimicrobial growth promoters used in animal feed. Rev.
 420 Med. Vet. (Toulouse) 151:99-104.
- 421 Corrigan, A., B. J. Fay, N. Corcionivoschi, and R. A. Murphy. 2017. Effect of yeast mannan-rich
 422 fractions on reducing *Campylobacter* colonization in broiler chickens. J. Appl. Poult.
 423 Res. 26:350-357.
- 424 Divakaran, D., A. Chandran, and R. Pratap Chandran. 2011. Comparative study on production of
 425 a-Amylase from *Bacillus licheniformis* strains. Braz. J. Microbiol. 42:1397-1404.
- 426 Ducluzeau, R., F. Dubos, P. Raibaud, and G. D. Abrams. 1976. Inhibition of *Clostridium* 427 *perfringens* by an antibiotic substance produced by *Bacillus licheniformis* in the digestive
 428 tract of gnotobiotic mice: effect on other bacteria from the digestive tract. Antimicrob.
 429 Agents Chemother. 9:20-25.
- 430 Duong, T., and M. E. Konkel. 2009. Comparative studies of *Campylobacter jejuni* genomic
 431 diversity reveal the importance of core and dispensable genes in the biology of this
 432 enigmatic food-borne pathogen. Curr. Opin. Biotechnol. 20:158-165.
- Edens, F. W., K. A. Joyce, C. R. Parkhurst, G. B. Havenstein, and M. A. Qureshi. 1998. Effect of
 litter moisture and brooding temperature on body weights of turkey poults experiencing
 poult enteritis and mortality syndrome. Poult. Sci. 77:411-415.
- Elkins, C. A., and L. B. Mullis. 2004. Bile-mediated aminoglycoside sensitivity in *Lactobacillus*species likely results from increased membrane permeability attributable to cholic acid.
 Appl. Environ. Microbiol. 70:7200-7209.
- Engberg, R. M., M. S. Hedemann, T. D. Leser, and B. B. Jensen. 2000. Effect of zinc bacitracin
 and salinomycin on intestinal microflora and performance of broilers. Poult. Sci.
 79:1311-1319.
- 442 England, J. A., S. E. Watkins, E. Saleh, P. W. Waldroup, I. Casas, and D. Burnham. 1996.
 443 Effects of *Lactobacillus reuteri* on live performance and intestinal development of male
 444 turkeys. J. Appl. Poult. Res. 5:311-324.
- Fasina, Y. O., M. M. Newman, J. M. Stough, and M. R. Liles. 2015. Effect of *Clostridium perfringens* infection and antibiotic administration on microbiota in the small intestine of
 broiler chickens. Poult. Sci. 95:247-260.
- 448 FDA, 1995. CGP Sec. 689.100 Direct-Fed Microbial Products.

Flores, C. A., T. Duong, T. E. Askelson, Y. Dersjant-Li, K. Gibbs, A. Awati, and J. T. Lee.
2019a. Effects of Direct Fed-Microorganisms and Enzyme Blend Co-Administration on
Growth Performance in Broilers Fed Diets With or Without Antibiotics. J. Appl. Poult.
Res. 28:1181-1188.

453	Flores, C. A., T. Duong, N. Augspurger, and J. T. Lee. 2019b. Efficacy of Bacillus subtilis
454	administered as a direct-fed microorganism in comparison to an antibiotic growth
455	promoter and in diets with low and high DDGS inclusion levels in broiler chickens. J.
456	Appl. Poult. Res. 28:902-911.

- Forgetta, V., H. Rempel, F. Malouin, R. Vaillancourt Jr, E. Topp, K. Dewar, and M. S. Diarra.
 2012. Pathogenic and multidrug-resistant *Escherichia fergusonii* from broiler chicken.
 Poult. Sci. 91:512-525.
- 460 Froebel, L. K., L. E. Froebel, and T. Duong. 2020. Refined Functional Carbohydrates reduce
 461 adhesion of *Salmonella* and *Campylobacter* to poultry epithelial cells in vitro. Poult. Sci.
 462 *Submitted*.
- Froebel, L. K., S. Jalukar, T. A. Lavergne, J. T. Lee, and T. Duong. 2019. Administration of
 dietary prebiotics improves growth performance and reduces pathogen colonization in
 broiler chickens. Poult. Sci. 98:6668-6676.
- Gaskins, H. R., C. T. Collier, and D. B. Anderson. 2002. Antibiotics as growth promotants: mode
 of action. Anim. Biotechnol. 13:29-42.
- Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott,
 C. Stanton, K. S. Swanson, P. D. Cani, K. Verbeke, and G. Reid. 2017. Expert consensus
 document: The International Scientific Association for Probiotics and Prebiotics (ISAPP)
 consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol.
 Hepatol. 14:491.
- Gong, L., B. K. Wang, X. Q. Mei, H. Xu, Y. Qin, W. F. Li, and Y. S. Zhou. 2018. Effects of
 three probiotic *Bacillus* on growth performance, digestive enzyme activities,
 antioxidative capacity, serum immunity, and biochemical parameters in broilers. J. Anim.
 Sci. 89:1561-1571.
- Gotelli, N. J., and A. M. Ellison. 2004. A Primer of Ecological Statistics. Sinauer Associates,
 Sunderland, Massachusetts, USA.
- Harms, R. H., N. Ruiz, and R. D. Miles. 1986. Influence of virginiamycin on broilers fed four
 levels of energy. Poult. Sci. 65:1984-1986.
- Hmidet, N., N. E. Ali, N. Zouari-Fakhfakh, A. Haddar, M. Nasri, and A. Sellemi-Kamoun. 2010.
 Chicken feathers: a complex substrate for the co-production of alpha-amylase and
 proteases by *B. licheniformis* NH1. J. Ind. Microbiol. Biotechnol. 37:983-990.
- Hofshagen, M., and M. Kaldhusdal. 1992. Barley inclusion and avoparcin supplementation in
 broiler diets. 1. Effect on small intestinal bacterial flora and performance. Poult. Sci.
 71:959-969.
- Ishihara, H., M. Takoh, R. Nishibayashi, and A. Sato. 2002. Distribution and variation of
 bacitracin synthetase gene sequences in laboratory stock strains of *Bacillus licheniformis*.
 Curr. Microbiol. 45:18-23.

490	Jang, A., X. D. Liu, M. H. Shin, B. D. Lee, S. K. Lee, J. H. Lee, and C. Jo. 2008. Antioxidative
491	potential of raw breast meat from broiler chicks fed a dietary medicinal herb extract mix.
492	Poult. Sci. 87:2382-2389.
493 494 495 496	Johnson, C. A., T. Duong, K. A. Smith, N. R. Augspurger, and J. T. Lee. 2020. Administration of <i>Bacillus subtilis</i> as Direct-Fed Microorganisms improves growth performance and reduces mortality of broilers raised under performance-reducing stress challenge. J. Appl. Poult. Res. <i>Accepted</i> .
497	Knap, I., B. Lund, A. B. Kehlet, C. Hofacre, and G. Mathis. 2010. Bacillus licheniformis
498	prevents necrotic enteritis in broiler chickens. Avian Dis 54:931-935.
499	Križková, L. v., Z. Ďuračková, J. Šandula, V. Sasinková, and J. Krajčovič. 2001. Antioxidative
500	and antimutagenic activity of yeast cell wall mannans in vitro. Mutat. Res. Genet.
501	Toxicol. Environ. Mutagen. 497:213-222.
502 503 504	Kruidenier, L., I. Kuiper, C. B. Lamers, and H. W. Verspaget. 2003. Intestinal oxidative damage in inflammatory bowel disease: semi□quantification, localization, and association with mucosal antioxidants. J. Pathol. 201:28-36.
505	Lan, P. T. N., M. Sakamoto, and Y. Benno. 2004. Effects of two probiotic <i>Lactobacillus</i> strains
506	on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as
507	revealed by molecular analysis of 16S rRNA genes. Microbiol. Immunol. 48:917-929.
508 509 510 511 512	Latorre, J. D., X. Hernandez-Velasco, J. L. Vicente, R. Wolfenden, B. M. Hargis, and G. Tellez. 2017. Effects of the inclusion of a <i>Bacillus</i> direct-fed microbial on performance parameters, bone quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles. Poult. Sci. 96:2728-2735.
513 514 515 516	Lei, X., X. Piao, Y. Ru, H. Zhang, A. Peron, and H. Zhang. 2015. Effect of <i>Bacillus amyloliquefaciens</i> -based direct-fed microbial on performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. Asian-Australas J. Anim. Sci. 28:239-246.
517 518	Lu, J., C. Hofacre, F. Smith, and M. D. Lee. 2008. Effects of feed additives on the development on the ileal bacterial community of the broiler chicken. Animal 2:669-676.
519	Marriott, B. M. 2000. Functional foods: an ecologic perspective. Am. J. Clin. Nutr. 71:1728S-
520	1734S.
521	McEwen, S. A., and P. J. Fedorka-Cray. 2002. Antimicrobial use and resistance in animals. Clin.
522	Infect. Dis. 34:S93-S106.
523	Midilli, M., M. Alp, N. Kocabagli, O. H. Muglali, N. Turan, H. Yilmaz, and S. Cakir. 2008.
524	Effects of dietary probiotic and prebiotic supplementation on growth performance and
525	serum IgG concentration of broilers. S. Afr. J. Anim. Sci. 38:21-27.

- Miles, R. D., D. M. Janky, and R. H. Harms. 1984. Virginiamycin and broiler performance.
 Poult. Sci. 63:1218-1221.
- Morris, E. O. 1956. Control of bacterial infection by bacitracin and neomycin: a preliminary
 note. J. Inst. Brew. 62:412-413.
- Ognik, K., and M. Krauze. 2012. Dietary supplementation of mannanoligosaccharides to turkey
 hens on their growth performance and antioxidant status in the blood. S. Afr. J. Anim.
 Sci. 42:380-388.
- Olson, C. K., S. Ethelberg, W. van Pelt, and R. V. Tauxe. 2008. Epidemiology of *Campylobacter jejuni* infections in industrialized nations Pages 163-189 in *Campylobacter*. I.
 Nachamkin, C. M. Szymanski, and M. J. Blaser, eds. American Society for
 Microbiology, Washington, DC.
- Paraskeuas, V., K. Fegeros, I. Palamidi, C. Hunger, and K. C. Mountzouris. 2017. Growth
 performance, nutrient digestibility, antioxidant capacity, blood biochemical biomarkers
 and cytokines expression in broiler chickens fed different phytogenic levels. Anim. Nutr.
 3:114-120.
- Pluske, J. R., I. H. Williams, and F. X. Aherne. 1996. Maintenance of villous height and crypt
 depth in piglets by providing continuous nutrition after weaning. J. Anim. Sci. 62:131144.
- Qiu, R., J. Croom, R. A. Ali, A. L. Ballou, C. D. Smith, C. M. Ashwell, H. M. Hassan, C. C.
 Chiang, and M. D. Koci. 2012. Direct fed microbial supplementation repartitions host
 energy to the immune system. J. Anim. Sci. 90:2639-2651.
- Rey, M. W., P. Ramaiya, B. A. Nelson, S. D. Brody-Karpin, E. J. Zaretsky, M. Tang, A. L. de
 Leon, H. Xiang, V. Gusti, I. G. Clausen, P. B. Olsen, M. D. Rasmussen, J. T. Andersen,
 P. L. Jørgensen, T. S. Larsen, A. Sorokin, A. Bolotin, A. Lapidus, N. Galleron, S. D.
 Ehrlich, and R. M. Berka. 2004. Complete genome sequence of the industrial bacterium *Bacillus licheniformis* and comparisons with closely related *Bacillus* species. Genome
 Biol. 5:r77.
- Ritz, C. W., R. M. Hulet, B. B. Self, and D. M. Denbow. 1995. Growth and intestinal
 morphology of male turkeys as influenced by dietary supplementation of amylase and
 xylanase. Poult. Sci. 74:1329-1334.
- Rosenquist, H., N. L. Nielsen, H. M. Sommer, B. Nørrung, and B. B. Christensen. 2003.
 Quantitative risk assessment of human campylobacteriosis associated with thermophilic *Campylobacter* species in chickens. Int. J. Food. Microbiol. 83:87-103.
- Rozs, M., L. Manczinger, C. Vagvolgyi, and F. Kevei. 2001. Secretion of a trypsin-like thiol
 protease by a new keratinolytic strain of *Bacillus licheniformis*. FEMS Microbiol. Lett.
 205:221-224.

562	Sims, M. D., K. A. Dawson, K. E. Newman, P. Spring, and D. M. Hoogell. 2004. Effects of
563	dietary mannan oligosaccharide, bacitracin methylene disalicylate, or both on the live
564	performance and intestinal microbiology of turkeys. Poult. Sci. 83:1148-1154.
565 566	Sneeringer, S., J. M. MacDonald, N. Key, W. D. McBride, and K. Mathews. 2015. Economics of antibiotic use in US livestock production. Economic Research Report.
567	Song, J., K. Xiao, Y. L. Ke, L. F. Jiao, C. H. Hu, Q. Y. Diao, B. Shi, and X. T. Zou. 2014. Effect
568	of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of
569	broilers subjected to heat stress. Poult. Sci. 93:581-588.
570	Spratt, R. S., B. W. McBride, H. S. Bayley, and S. Leeson. 1990. Energy metabolism of broiler
571	breeder hens. 2. Contribution of tissues to total heat production in fed and fasted hens.
572	Poult. Sci. 69:1348-1356.
573	Spring, P., C. Wenk, K. A. Dawson, and K. E. Newman. 2000. The effects of dietary
574	mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in
575	the ceca of <i>Salmonella</i> -challenged broiler chicks. Poult. Sci. 79:205-211.
576	Stutz, M. W., and G. C. Lawton. 1984. Effects of diet and antimicrobials on growth, feed
577	efficiency, intestinal <i>Clostridium perfringens</i> , and ileal weight of broiler chicks. Poult.
578	Sci. 63:2036-2042.
579 580	Surai, P. F. 2007. Natural antioxidants in poultry nutrition: new developments. Pages 26-30 in Proc. 16th European Symposium on Poultry Nutrition, Strasbourg, FRA.
581	Tawfeek, S. S., K. M. A. Hassanin, and I. M. I. Youssef. 2014. The effect of dietary
582	supplementation of some antioxidants on performance, oxidative stress, and blood
583	parameters in broilers under natural summer conditions. J. Worlds Poult. Res. 4:10-19.
584 585 586 587	Thanh, N. T., T. C. Loh, H. L. Foo, M. Hair-Bejo, and B. K. Azhar. 2009. Effects of feeding metabolite combinations produced by <i>Lactobacillus plantarum</i> on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. Br. Poult. Sci. 50:298-306.
588 589 590	Trela, J., B. Kieronczyk, V. Hautekiet, and D. Jozefiak. 2020. Combination of <i>Bacillus licheniformis</i> and salinomycin: Effect on the growth performance and GIT microbial populations of broiler chickens. Animals (Basel) 10:889.
591 592 593	Tye, A. J., F. K. Siu, T. Y. Leung, and B. L. Lim. 2002. Molecular cloning and the biochemical characterization of two novel phytases from <i>B. subtilis</i> 168 and <i>B. licheniformis</i> . Appl. Microbiol. Biotechnol. 59:190-197.
594	Vieco-Saiz, N., Y. Belguesmia, R. Raspoet, E. Auclair, F. Gancel, I. Kempf, and D. Drider.
595	2019. Benefits and inputs from Lactic Acid Bacteria and their bacteriocins as alternatives
596	to antibiotic growth promoters during food-animal production. Front. Microbiol. 10:57.

- Vila, B., Z. Jaradat, R. Marquardt, and A. Frohlich. 2002. Effect of T-2 toxin on in vivo lipid
 peroxidation and vitamin E status in mice. Food Chem. Toxicol. 40:479-486.
- 599 Visek, W. J. 1978. The mode of growth promotion by antibiotics. J. Anim. Sci. 46:1447-1469.
- Wang, S. Y., W. Bottje, P. Maynard, J. Dibner, and W. Shermer. 1997. Effect of santoquin and
 oxidized fat on liver and intestinal glutathione in broilers. Poult. Sci. 76:961-967.
- Williams, B. J. 1985. The effects of neomycin and oxytetracycline alone or combined upon the
 incidence of salmonellosis in broiler chickens. Poult. Sci. 64:1455-1457.
- Windisch, W., K. Schedle, C. Plitzner, and A. Kroismayr. 2008. Use of phytogenic products as
 feed additives for swine and poultry. J. Anim. Sci. 86:140-148.
- Ku, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary
 fructooligosaccharide on digestive enzyme activities, intestinal microflora and
 morphology of male broilers. Poult. Sci. 82:1030-1036.
- Yason, C. V., B. A. Summers, and K. A. Schat. 1987. Pathogenesis of rotavirus infection in
 various age groups of chickens and turkeys: Pathology. Am. J. Vet. Res. 48:927-938.

of the basal diet		
Item (%)	0 to 14 d	14 to 21d
Ingredients		
Corn	60.76	65.74
Soybean Meal	26.56	22.25
Meat and Bone Meal	5.00	4.43
Corn DDGS	5.00	5.00
Fat, A/V blend	0.66	0.77
DL-Met	0.26	0.25
Lysine HCL	0.27	0.25
Limestone	0.65	0.55
$CaH_4(PO_4)_2$	0.12	0.00
NaCl	0.37	0.27
NaHCO ₃	0.04	0.19
Trace Minerals ¹	0.05	0.05
Vitamins ²	0.25	0.25
Phytase ³	0.01	0.01
Xylanase ⁴	0.01	0.01
Calculated Nutrients		
Available P	0.45	0.40
dig Met	0.57	0.54
dig TSAA	0.84	0.78
dig Lys	1.18	1.04
dig Trp	0.20	0.18
dig Thr	0.69	0.62
Analyzed Nutrients ⁵		
Dry Matter	88.86	89.13
Crude Protein	21.60	19.20
ME (kcal kg ¹)	3014	3124
Crude Fat	4.17	4.89
Crude Fiber	4.20	3.50
Ash	4.73	4.29
Ca	0.80	0.77
Total P	0.97	0.50
Na	0.22	0.17

 Table 1. Ingredient composition and nutrient content

 of the basal diet

¹Trace mineral premix added at this rate yields 60.0 mg manganese, 60 mg zinc, 60 mg iron, 7 mg copper, 0.4 mg iodine, a minimum of 6.27 mg calcium, and a maximum of 8.69 mg calcium per kg of diet. The carrier is calcium carbonate and the premix contains less than 1% mineral oil.

²Vitamin premix added at this rate yields 22,045 IU vitamin A, 7,716 IU vitamin D3, 91 IU vitamin E, 0.04 mg B12, 11.9 mg riboflavin, 91.8 mg niacin, 40.4 mg d-pantothenic acid, 261.1 mg choline, 2.9 mg menadione, 3.50 mg folic acid, 14.3 mg pyroxidine, 5.87 mg thiamine, 1.10 mg biotin per kg diet. The carrier is ground rice hulls.
³OptiPhosPF, Huvepharma. Peachtree City, GA. 748 units kg⁻¹ feed
⁴Hostazym X, Huvepharma. Peachtree City, GA. 1500 units kg⁻¹ feed
⁵Performed by Midwest Laboratories, Inc., Omaha, NE

Table 2. Growth performance of broiler chickens

1	Treatments ¹					Pooled	
Item	BMD	UNT	BL	BL+A	SYN	P-value	SEM
BW (kg)							
0 d	0.044	0.044	0.044	0.044	0.044	0.891	0.000
14 d	0.439	0.436	0.441	0.442	0.440	0.800	0.016
21 d	0.888	0.888	0.903	0.887	0.894	0.555	0.004
ADG (kg bird-day ⁻¹)							
0 to 14 d	0.031	0.031	0.031	0.032	0.031	0.697	0.000
14 to 21 d	0.071	0.072	0.074	0.071	0.072	0.417	0.001
0 to 21 d	0.042	0.042	0.043	0.043	0.042	0.492	0.000
ADFI (kg bird-day ⁻¹)							
0 to 14 d	0.035	0.035	0.035	0.035	0.035	0.986	0.000
14 to 21 d	0.096	0.098	0.100	0.098	0.098	0.248	0.001
0 to 21 d	0.055	0.056	0.056	0.056	0.055	0.457	0.000
Mortality corrected FG	CR (Feed:G	ain)					
0 to 14 d	1.239 ^b	1.263 ^a	1.239 ^b	1.243 ^{ab}	1.248^{ab}	0.049	0.004
14 to 21 d	1.350	1.361	1.357	1.369	1.353	0.717	0.004
0 to 21 d	1.301	1.317	1.305	1.314	1.305	0.272	0.003
Mortality (%)							
0 to 14 d	1.111	0.333	0.667	0.667	1.000	0.794	0.222
14 to 21 d	0.000	0.333	0.333	0.000	0.800	0.581	0.110
0 to 21 d	1.111	0.667	0.911	0.667	1.800	0.386	0.301

^{a,b} Superscripts indicate significant differences between treatments ($P \le 0.05$) ¹.000⁴ ¹

Figure 1. Enumeration of gastrointestinal bacteria from broiler chickens at 21 d post-hatch. (A) *Clostridium perfringens* and (B) *Campylobacter* spp were enumerated from the ileum and cecum, respectively; *Lactobacillus* spp. were enumerated from the (C) ileum and (D) cecum. BMD, bacitracin methylene disalicylate; UNT, untreated; BL, direct-fed *B. licheniformis*; BL+A, BL with additive blend; SYN, synbiotic. Counts are reported as mean \pm SEM log₁₀ cfu g⁻¹ digestive contents from 9 UNT broilers or 10 broilers for all other treatments. Means not sharing common letters differ significantly (P \leq 0.05).

Figure 2. Ileal histomorphometry in broiler chickens. Ileal sections were sampled at 21d post-hatch for determination of (**A**) villus height and (**B**) crypt depth and calculations of (**C**) VH:CD. BMD, bacitracin methylene disalicylate; UNT, untreated; BL, direct-fed *B. licheniformis*; BL+A, BL with additive blend; SYN, synbiotic. Villus height and crypt depth are reported as mean \pm SEM μ m of 3 ileal sections from 9 UNT broilers or 10 broilers for all other treatments. Means not sharing common letters differ significantly (P \leq 0.05).

Broderick et al. - 31

Figure 3. Serum antioxidant capacity of broiler chickens. Serum was separated from whole blood and collected at 21 d post-hatch. Antioxidant capacity is reported as the treatment mean \pm SEM mM trolox equivalents from 9 UNT broilers or 10 broilers for all other treatments. Means not sharing common letters differ significantly (P \leq 0.05).

The authors declare no conflict of interest

Journal Prevention